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Abstract 

 
Microfluidics (MF) applications encompass a plethora of physical phenomena, which 
makes their modeling an extremely difficult task.  A multitude of driving forces (pressure 
gradients, electric field, surface tension etc.) are utilized in various combinations to 
achieve best results.  Also rigorously utilized are the electro-chemical properties of the 
resident fluid and analytes, which are manifested in the well-know electrokinetic effects 
like electrophoresis.  Accurate analysis of these electrokinetic phenomena can only be 
performed when the chemical interaction of the analytes, which may be acid, base or an 
ampholyte (e.g. proteins), with the system are taken into consideration. Dielectrophoresis 
is another phenomenon that is being widely used in certain types of MF applications. In 
this phenomenon analytes comprising of electro-chemically neutral particles are 
transported and manipulated in non-uniform electric fields by virtue of induced dipole 
moments.    Phenomena and applications mentioned above, and many more, constitute 
the bulk of contemporary MF applications.  Furthermore, these diverse phenomena are 
interrelated necessitating a fully coupled unified formulation that can account for the 
interplay between various transport phenomena. 
 
Majority of the contemporary work in this regard have treated diverse phenomena 
separately, making their utility for real life applications limited.  In this work we present 
a unified computational framework for such applications. Novel domain decomposition 
based multi-block finite volume scheme is developed, which apart from rendering high 
accuracy for complex geometries, is amenable to parallelization on parallel computer 
architectures. An application example pertaining to capillary electrophoresis is presented. 
The numerical scheme is the most versatile of its kind and is computationally efficient. 
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Introduction: 
 
Contemporary MF applications are typically characterized by plethora of physical 
phenomena. This, in addition to their ever-increasing scope and complexities, makes their 
realistic modeling a daunting task. In this work we report efforts towards developing a 
comprehensive mathematical and computational model for realistic, contemporary MF 
applications. The approach and philosophy adopted here are geared towards 
generalization without having to resort to restrictive assumptions like simplicity in 
geometry, absence of inertial effects, presence of only strong analytes or presence of only 
univalent weak analytes, etc. Hence a generic approach is adopted, which is scalable with 
respect to physical phenomena and amenable to efficient algorithmic implementation. 
 
Much of the work that has appeared in the literature in this context has focused on limited 
individual aspects of physical phenomena in MF applications with numerous simplifying 
assumptions. Patankar and Hu [1] reported a finite-volume scheme for electroosmotic 
flow in cross-channel devices. Similarly, Dutta et. al. [2] reported a spectral element 
method for studying electroosmotic flow control in complex 2D geometries. Recently, 
Qiao and Aluru [3] presented an alternate way of modeling electroosmotic flows (with 
step changes in zeta potential) in fluidics network by modeling them as simplified 
electrical circuits. These works, although insightful, are pure fluid dynamics studies in 
the sense that they do not touch upon the presence of analytes in the system. They are 
also restricted to simple geometries. 
 
The transport behavior of charged or neutral analytes (or solutes) in electric field has 
received considerable attention from numerical modeling and simulation point of view. 
This phenomenon, which is referred to as electrophoresis, is at the heart of majority of 
MF applications concerned with identification, separation and patterning of various 
analytes. Central to modeling electrophoresis is the understanding of both transport and 
stoichiometric behavior of analytes in the electrolyte system in the presence of numerous 
driving forces [4-7].  Ermakov et. al. [8] reported a 2D finite-difference work that 
describes electrokinetically driven mass transfer phenomena in chip devices. His 
formulation however is restricted to strong analytes (pure ionic forms with fixed charge). 
Plethora of work on modeling the behavior of weak analytes has been reported in 
literature. Saville and Palusinski [9] and Palusinski et. al. [10] reported 1D model for 
electrophoresis of soluble materials. Their model is restricted to monovalent analytes and 
doesn’t account for the presence of lateral boundaries, bulk flow and temperature 
gradients. Mosher et. al. [11] presented a mathematical model of the electrophoretic 
behavior of proteins in simple geometries with similar restrictions. Recently Gas et. al. 
[12] presented a computational model for optimization of background electrolyte in 
Capillary Zone Electrophoresis. The model however neglects the effect of diffusion and 
is restrictive with respect to number of analytes, type of analytes and processes being 
modeled. In general majority of the work in this regard have been along the lines 
mentioned above. 
 



In this work it is sought to redress the restrictions mentioned above and to provide a 
simulation tool for real-life applications. A novel multi-block finite volume scheme is 
implemented to solve all transport equations in a generalized framework. The use of 
domain decomposition based multi-block technique provides the power to tackle 
complicated geometry and also provides the means to harness the suitability of finite 
volume scheme for boundary layer flows [13]. In addition this technique is amenable to 
scalable strategies like parallelization. A succinct formulation to model the stoichiometry 
of any multivalent weak analyte and its coupling with transport phenomena is presented 
and implemented. This can account for all the major physical phenomena individually or 
together. To our knowledge such computational model doesn’t exist and it can provide 
the foundation for a powerful analysis and CAD tool.  
 
Formulation for transport phenomena in continua 
 
In this section we outline a generalized formulation for transport phenomena, which 
encompasses all pertinent conservation laws like conservation of momentum (Navier-
Stokes equation), energy, mass and current. The basic governing equation of transport 
can be formulated as conservation of total flux J

�

, of a dependent variable �  in the 
following form [14,15]: 
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where J

�

 is the vector depicting the total flux of dependent variable � .  Two basic 
components of J

�

 are the diffusive flux and the convective flux, and there can be more. In 
its most general form J

�

 can be represented as: 
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In the above equations S� is the source term for the dependent variable �  and it can also 
contain terms that could not be included in the transient and divergence terms of Eq. (1), 
U
�

is the bulk flow velocity vector, �� is the diffusivity and EKJ
�

in general can denote 
other fluxes other than the convective and diffusive ones. In our case we will reserve it 
for electrophoretic (and possibly dielectrophoretic) flux that arises in solute transport in 
electrokinetic flows. It can be easily shown that for appropriate choice of � , the flux 
conservation statement (Eq. 1) in conjunction with the basic continuity equation, which 
ensures basic mass conservation of the bulk fluid, can represent the whole gamut of 
conservation laws encountered in continuum fluid dynamics and heat and mass transfer 
problems [14,15]. For the incompressible case continuity equation in generalized form 
can be written as: 
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where �  is the density and b is the mass source or sink term. 

This approach of casting transport phenomena as a statement of conservation of 
convection-diffusion flux provides a generic platform for algorithmic implementation. 
The basic nature of all the relevant governing equations is similar mathematically and 
also physically since in all of them flux of a dependent variable is conserved. Hence 
generic numerical schemes can be adopted to solve them in coupled fashion [14,16]. 
  
Electrophoretic transport of weak analytes in microfluidics: 
 
Weak analytes (or solutes) undergo rapid association/dissociation reactions in aqueous 
solutions and exist in both neutral and ionic states. The extent of its ionic and neutral 
contents depends on a variety of local factors the most important one being the local pH 
value. As a result transport behavior of weak analytes is intricately linked with its 
chemical behavior and a dissociation model to describe this chemistry is required. Strong 
analytes on the other hand undergo complete dissociation and exist in pure ionic states. 
  
Dissociation Model: From chemical behavior point of view analytes can belong to any of 
the three categories of acid, base and ampholyte. One of the most commonly used 
definitions for these categories are - an acid can donate protons (hydrogen ion), base can 
accept protons and an ampholyte (e.g. proteins) can exhibit both of the above properties 
[18]. Valency of an analyte is defined as the maximum number of dissociable hydrogen 
ions in either neutral or ionic states.  
  
A general analyte A with n dissociable protons (valency of n) is considered. For such an 
analyte there are n number of dissociation reactions [18].  [Aj] (j=0 to n) is designated as 
the concentration of one of the ionic (or neutral) states of A with j protons. Thus the n+1 
possible states of A will be An, An-1, …, A0.  Using the association/dissociation reaction 
expressions the following quantities can be derived [20]: 
 
(1) Degree of dissociation (� ): Degree of dissociation of an ionic state containing j 
dissociable protons, Aj, is defined as the ratio of [Aj] to [A]; 
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When j=n the numerator in the above expression is 1 and the denominator remains the 
same as it is independent of j. Ki denotes the equilibrium constant [20]. 
 
(2) Effective charge ( effz ): In the formulation adopted here instead of treating each state 
as a separate entity, which becomes a logistical nightmare for multivalent analytes, the 
ensemble of all the states is treated as a single entity with effective charge, effective 



mobility, etc [20]. This approach not only renders a compact formulation for any 
multivalent analyte but also makes perfect sense physically. The time scales of the 
reactions are so small compared to the time scales of typical diffusion or convection 
mechanisms that the reactions can be appropriately considered to be instantaneous and 
the analyte can be considered as a single entity with effective properties. The effective 
charge can be derived as [20]: 
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where �  is the net charge of analyte possessing all n dissociable protons 
 
(3) Effective mobility ( eff� ):  Similar to effective charge, effz , effective mobility, eff� , 
can be defined as: 
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in which case the electrophoretic flux takes the form 
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The association/dissociation model presented here, it should be noted, is for any 
multivalent analyte (acid, base or ampholyte). One has to choose parameters like n, �  
and dissociation constants, Ki, appropriately. 
 
General Mass Transport Model: With the stoichiometric model in place a transport 
equation for conservation of mass of analyte A can now be formulated. The total mass 
flux, Eq. (2), can be written as (replacing � with [A]): 
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where �  is the electric potential, which is related to E

�

 as E � ���
�

, DA is the 
diffusivity of A, and other parameters are as defined above.  The mass conservation 
equation for analyte A then looks like: 
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where J

�

is as defined in Eq. (8). Electric potential, � , is obtained by imposing the 
current continuity condition [20].  [H+]  is obtained by solving for the electroneutrality 
condition, which stipulates that at every point in the bulk sum of all charges is zero [20]. 
 



Numerical Scheme 
 
The generalized flux conservation statement, Eq. (1), which encompasses the governing 
equations for velocities, temperature, concentrations of analytes and electric potential, 
along with the incompressible continuity equation, Eq. (3), dissociation model (Eqs. 4-
10), and the explicit electroneutrality condition constitute the basic computational model 
for electrophoretic applications with appropriate initial and boundary conditions. No 
approximations regarding dimensionality of the problem or type of physical phenomena 
that can be incorporated, etc. are entailed.  In this work a multi-block finite volume 
scheme with structured grids is used for numerical solution of this formulation. 
Unfortunately a detailed discussion of this technique is beyond the scope of this paper 
and readers are referred to Chatterjee [20] and references therein for details. 
 
Applications:  Capillary isoelectic focusing with and without bulk flow 
 
Capillary isoelectric focusing is a popular and effective technique used to identify and 
separate ampholytes [4]. There exists a pH value (pI value), called isoelectric point, at 
which the net charge of an ampholyte is zero and hence is immobile to the electric field at 
that point. Simulation of isoelectric focusing in a straight channel 1 cm long (other 
dimensions are 1000 �m each) is presented here and validated for the cases of no bulk 
flow (all velocities zero) and electroosmotic bulk flow. Histidine, an ampholyte, is the 
sample being focused in a channel, and an immobilized pH gradient was created by 
controlled distribution of the buffer constituents, cacodylic acid (CACO) and tris 
(hydroxymethyl)-aminomethane (TRIS). In order to maintain an immobilized pH 
gradient, mobilities of CACO and TRIS are taken to be zero.  Linear distributions of 
TRIS and CACO are maintained in the channel, and initially 1mM of Histidine is 
uniformly distributed in the channel as shown in Fig. (1). Properties of the analytes used 
in the model are as given in Palusinski et. al [10]. 
 
Transient simulations are performed for 
this setup. A current density of 0.2 A/m2 
is used. Anode is to the left. Calculated 
transient Histidine concentration profiles 
are shown in Fig. (2). Profiles are plotted 
for 10, 20, 30 and 200 minutes of 
focusing. As can be see, Histidine tends 
to concentrate towards its isoelectric 
point. This result agrees extremely well 
with the reported results of Palusinski et. 
al [10]. As a result of focusing other 
parts of the channel are left virtually 
Histidine-free. In the Histidine-free 
zones conductivity is very low and 
current is mainly carried by hydrogen 
and hydroxyl ions. The calculated conductivity profiles are shown in Fig. (3). Again the 
agreement with Palusinski et. al. [10] is excellent. 

 
Figure 1: Initial concentration distribution in 
isoelectric focusing



                
An interesting extension to this problem would be to study the effect of electroosmosis 
(EOM) on the focusing phenomenon.  A wall zeta-potential of –0.002V is used to impart 
electroosmotic driving force at the upper and lower walls. Zero velocity gradient 
condition is imposed at the right end of the channel. A transient analysis of this problem 
is carried out along the same lines as above. The pH gradient no longer remains constant 
(immobilized); instead shows notable non-linear transient behavior as shown in Fig. (4). 
Effect of these phenomena on focusing of Histidine sample is shown in Fig. (5). As can 
be seen the focusing point (point of maximum concentration) shifts to the right in the 
presence of bulk flow. While the shift is small at 10 minutes, it becomes substantial as 
time progresses, as seen for the case of 50 minutes. For times later than this it can be seen 
that the focusing process becomes unfeasible as the focusing point shifts too far to right. 

Figure 3:  Transient Histidine concentration 
profiles in IEF (without bulk flow) after 10, 20, 
30 and 200 minutes of focusing 

Figure 2:  Transient pH profiles in IEF (with 
bulk flow) after 0, 10, 30 and 50 minutes of 
focusing. 

 

Figure 4:  Transient conductivity profiles in 
IEF (without bulk flow) after 10, 20, 30 and 
200 minutes of focusing 

 

Figure 5:  Transient Histidine concentration 
profiles in IEF with bulk flow (solid lines) and 
without bulk flow (dashed lines) after 10 and 50 
minutes of focusing. 



Thus the presence of bulk flow imposes restriction on duration and tightness of focusing 
that can be obtained otherwise. 
 
Conclusions: 
 
A generalized multi-physics formulation for contemporary MF applications is presented. 
Particularly the case of transport and stoichiometric phenomena in Capillary 
Electrophoresis type applications is presented. This formulation, apart from being 
genuinely general, is amenable to efficient algorithmic implementation and 
parallelization.  
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