

New generation EDA tools supporting various MEMS-ASIC integration schemes

Sandeep Akkaraju IntelliSense Corporation

Outline

- Introduction
- Packaging impact on MEMS
- Challenges in package modeling
- Case studies
- Summary

World of MEMS packaging is evolving rapidly

Learning a new set of TLAs...

Traditional Packaging

QFP, QFN, POP, MCM, FBGA ...

Next generation MEMS packaging

3D POP, 3D SIP, 3D WLP, 3D SIC...

Minimum Package Volume

Market drivers...

Form factor

Height & footprint (1mm going down to 0.8 mm)

Cost

<1 \$ components ⇒ low packaging BOM

Integration

GPS + Inertial
BaseBand + Filters
Antennas + Tuners

Environment

Buzzers & bells, extreme temperatures, mechanical flexing, EM issues

Reliability

Beyond drop tests: Fatigue, vacuum integrity, hysteresis, product year lifetime issues

Technology drivers...

Chipscale Packaging

Stack large number of dies [11 die in 1 mm form factor in 2010 14 die in 0.8 mm in 2014]

Die/Wafer Stacking

KGD to KGSites
Direct Wafer Stacking
3D Packaging

Via Last/Via First/TSV

Match KGD to KG sites at high throughput

PoP/eWLP/3DSIC/...

Package on Package Embedded approaches

Invensense gyro: MEMS+ASIC stacking with Al/Ge bonding

VTI Accel: Full WLP

IME (Singapore)

Die on Wafer Assembly Two level bumping

MEMS ASIC bonding Support Wafer for MEMS with bumps

A typical MEMS device...

Now, layer pa	ckaging	effects on	top of this.	• • •
---------------	---------	------------	--------------	-------

Thermo-mechanical

3 layer stack:

Cap Wafer
Eutectic Bonded to Device Wafer with TSV
Bumped to ASIC wafer
(underfill not shown)

Thermo-mechanical

Thermo-mechanical

Electro-thermal

Bottom Electrodes
Temperature sensitivity due to curvature

Comb Electrodes Curvature related sensitivity

Electrical

Shunt issues

Parasitics & cross talk

Packaging impact...

Mechanical	Mechanical parameters: stresses, spring constants, damping, shock	
Electrical	Sense & shunt capacitance change; pull-in and tuning voltage change	
Thermal	Temperature co-efficients, temperature gradient co-efficients	
Ambient	Vacuum change, viscosity change in air, moisture effects	
Electromagnetic	Parasitic capacitances, inductances and resistance	

Manifests as bias stability, temperature coefficients, and other performance killers...

MEMS Design Is A Collaboration Challenge...

The chain of pain... (1)

How do you explore a huge range of packaging options?

Compact models for packaging...

The chain of pain... (2)

How do you efficiently create MEMS + Package models?

Close to 80% of the time spent in mesh creation and manipulation...

Automated HEX meshing...

The chain of pain... (3)

How do you compensate packaging and temperature effects?

Automated System Model Extraction (SME)

- Capture total energy of relevant mode (Mechanical, Electrostatic, Dissipation)
- Krylov/Arnoldi methods to generate Lagrangian formulation
- Create Compact model for system modeling

The chain of pain... (4)

How do you fine tune TSV processes?

The experimental results of the etching. Comparison of etching 5 μm openings with an etch/dep cycle of 7s/7s.

The experimental result of the etching of trenches using three etching steps with different etching/polymerization time configurations. 7s/7s, 9s/7s and 5s/7s are used sequentially, each for 5 minutes.

Comparison of etching a 5 μm trench with a 7s/8s cycle

Northrup: RF Switch

RF Switch

Within 10% of full FEA models...

Hard bonding: Au-Si Eutectic on Ceramic Substrate

Soft bonding: Epoxy bonding on FR-4

Raytheon RF Switch

Tunable capacitor

Mode Matched Tuning Fork Gyro (M²-TFG)

Mode Matched Tuning Fork Gyro (M²-TFG)

HDL Model
Cadence, Synopsys, Mentor, Mathworks
(Spectre, HSPICE, Eldo, Simulink, System Vision...)

Verilog-A modeling results...

Summary

- New packaging approaches represent an opportunity to rethink MEMS platforms
- MEMS increasingly is subsuming the package
- MEMS Design Is a collaboration challenge
- New generation EDA tools aimed at breaking 'chain of pain'
 - Allow seamless integration of WLP MEMS+ASIC