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Abstract We developed silicon micro-mirrors with two asymmetric axes for electrostatic field distribution measurements using 

a single external piezoelectric ceramic vibrating element. The 2D asymmetric silicon micro-mirrors were fabricated by using an 

SOI-MEMS process. The vibration transmissibility of the proposed mirror under a vacuum atmosphere was evaluated by dynamic 

analysis. We obtained the resonant frequency in the low-speed axis of 23.3 Hz and in the high-speed axis of 556.8 Hz respectively. 

To prevent a reduction in the amplitude width, we induced a 90° phase shift between the low- and high-speed axes at the 

resonance frequency. The ratio of the deformation between the low-speed axis of 30 Hz and the high-speed axis of 604 Hz was 

simulated to be 4.04. In measurement, the ratio of the deformation between the low-speed axis of 23.3 Hz and the high-speed axis 

of 556.8 Hz was 6.48. The difference between the calculated and experiment values were apparently due to the fabrication errors 

and frequency characteristics of piezoelectric ceramic vibrating element. A Lissajous pattern projected onto the screen. The 

scanning angle was a degree of 7.6 (total angle) in the low- and high-speed axis. We subsequently measured the electrostatic field 

distribution using the 2D asymmetric silicon micro-mirrors by means of the optical level method. 
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1. Introduction 

Microelectromechanical system (MEMS) scanning mirrors are 

used in laser projectors, laser scanners, collision-prevention sensors, 

wearable displays with retinal scan recognition, and electrostatic 

field distribution measurement (1-4). In the case of 2D silicon 

scanning micro-mirrors, the resonance frequencies in the low- and 

high-speed axes have been reported to exceed 500 Hz and 10,000 

Hz, respectively (5). 

Silicon scanning micro-mirrors have characteristics such as 

miniaturization, high reliability, and high-speed scanning. In the 

case of a micro-mirror driven by electrostatic force, the rotation 

angle of the optical scanner driven by conventional electrostatic 

force is limited to the gap between the mirror and substrate, and 

changing this angle requires a high voltage (1). In the case of a 

micro-mirror driven by electromagnetic force, although the 

electromagnetic MEMS optical scanner operates at a low voltage 

and with a large rotation angle, a magnet and a yoke must be 

mounted (6). In the case of a micro-mirror driven by piezoelectric 

force, because the stiffness of torsion increases as the piezoelectric 

film thickness evaporated due to torsion is increased, the 

piezoelectric ceramic vibrations are not efficiently transmitted to 

the torsion. Thus, the magnitude of a vibration turns out to be a 

small (7). Moreover, the mode of vibration becomes complex. In 

general, the low-speed axis is driven in non-resonance mode and 

the high-speed axis is driven in resonance mode. Therefore, the 

operating current must be high (8). 

Recently, an optical beam was scanned using a simple 

asymmetric micro-mirror excited by an external piezoelectric 

ceramic vibrating element irrespective of the rotation angle and 

high voltage (9, 10). 2D asymmetric silicon micro-mirrors can be 

controlled via the independent resonance frequency of each 

rotation axis through the use of a single external piezoelectric 

ceramic vibrating element. The merits of 2D asymmetric silicon 

micro-mirrors allow the resonance frequencies of the low- and 

high-speed axes to be controlled via the mode design of the 

micro-mirrors for vibration.  

In the previous study, asymmetric silicon micro-mirrors are 

fabricated by the anodic bonding of an ultra-thin silicon film on a 

glass substrate, followed by the fabrication of ultra-thin silicon 

MEMS mirror structures by a picosecond-laser micromachining 

system (10). By vibrating the asymmetric silicon micro-mirror with 

an external vibrating element, we obtained a horizontal operation 

of 118 Hz and a vertical operation of 11040 Hz at the resonance 

frequency.  

Electrostatic field distribution measurements using a silicon 

micro-mirror array fabricated by the MEMS process have been 

presented (11). The deflection angle of each silicon micro-mirror, 

which was placed on a spherical surface and was deflected by an 

electrostatic field, was measured optically using a 2D optical 

scanner and position-sensitive detector (PSD). The optical scanner 

is composed of a computer-controlled stepping motor and 

single-axis MEMS optical scanner. However the angle accuracy of 

the stepping motor was found sufficient. The rotation of the 

stepping motor required a certain amount of time. The 

measurement time was 30 seconds or more in spite of the goal for 1 

second. However low speed 2D silicon micro-mirrors such as 
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resonant frequencies in the low-speed and high-speed axes of 30Hz 

and 600 Hz has not yet been reported. 

This study aims to develop silicon micro-mirrors with two 

asymmetrical axes for electrostatic field distribution measurements 

using a single external piezoelectric ceramic vibrating element. The 

vibration transmissibility of the proposed mirror under a vacuum 

atmosphere was evaluated by dynamic analysis. We measured an 

electrostatic field distribution using the 2D asymmetric silicon 

micro-mirrors by means of the optical level method. 

2. Design and vacuum-sealing package 

2.1 2D asymmetric silicon micro-mirror design     

  To evaluate the absolute deformational displacement of the 

characteristic mode, we conducted simulated modal analysis of the 

resonance frequency and dynamic analysis. The resonance 

frequency of the 2D asymmetric silicon micro-mirror was 

evaluated using the IntelliSuite software (IntelliSuite, ver. 8.7). 

We designed 2D asymmetric silicon micro-mirrors, as shown in 

Fig. 1. The 2D asymmetric silicon micro-mirrors were designed to 

be 5.8 mm long × 5.8 mm wide × 15 m thick. The torsion mirror 

was 1.7 mm long × 2.0 mm wide. 

First, we used Blueprint, which is a physical design tool. The 3D 

model was constructed in IntelliSuite’s 3D builder, which is a 3D 

mesh generator. The frequency analysis was performed by using 

the ThermoElectroMechanical analysis module. The minimum 

mesh was 46 m long × 2.5 m wide × 7.5 m thick at torsion. 

The parameters used in the analysis are summarized in Table 1. 
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Fig. 1. Layout of a 2D asymmetric silicon micro-mirror. 

 

Table 1. Parameters used for analysis with the IntelliSuite 

software 

 

 

 

 

 

 

In the first stage, we performed the modal analysis using the 

IntelliSuite software. Fig. 2 shows the results of the modal 

analysis of the 2D asymmetric silicon micro-mirrors. The 

resonance frequencies in the low- and high-speed axes, as 

calculated by the ThermoElectroMechanical module of the 

IntelliSuite software package, were 30 Hz and 604 Hz, 

respectively. The results indicate the eigenvalue and mode shape. 

However, dynamic analysis is necessary to evaluate the absolute 

deformational displacement of the characteristic mode. The 

dynamic analysis can indicate the absolute amount of modification 

although the modal analysis can evaluate the relative spatial 

relationship of modification. 

 

(a) Low-speed axis (Normalized modal displacement of Mode 

1:30.708Hz) 

 

(b) High-speed axis (Normalized modal displacement of Mode 

6:604.48Hz) 

Fig. 2. Modal analysis of 2D asymmetric silicon micro-mirrors. 

 

Fig. 3 shows the model for dynamic analysis of the 2D 

symmetric silicon micro-mirrors. The sine wave amplitude was 

generated by a pressure of 0.1 MPa as a function of frequency, 

although the mesh size differs from that used in the modal analysis. 

Fig. 4 shows a plot of the amplitude–frequency characteristics 

calculated by dynamic analysis. The ratio of the deformation 

between the low-speed axis of 30 Hz and the high-speed axis of 

604 Hz was simulated to be 4.04. 
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Fig. 3. Model for dynamic analysis of 2D asymmetric silicon 

micro-mirrors.  
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Fig. 4. Vibration transmissibility characteristics calculated by 

dynamic analysis. 

 

2.2 Vacuum-sealing packaging 

2D asymmetric silicon micro-mirrors were fabricated by 

SOI-MEMS process (11); a photograph of one of the resulting 

micro-mirrors is shown in Fig. 5 (MEMS CORE). The torsion 

Material Silicon 

Young’s modulus 160 GPa 

Density 2.30 g/cm3 

Poisson’s ratio 0.226 
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beam was cut with a picosecond-laser micromachining system 

(Japan Laser and Time-Bandwidth, Duettino-SHG). For 

micromachining with a picosecond laser, the 2D asymmetric 

silicon micro-mirror was placed on a 2D nano-motion stage 

(Aerotech, ANT130-160), which was driven by motion controlled 

software (Aerotech, Automation 3200).  

After the 2D asymmetric silicon micro-mirror was placed on the 

piezoelectric ceramic vibrating element, we adhered the 2D 

asymmetric silicon micro-mirror to the piezoelectric ceramic 

vibrating element and vacuum-sealing package (KYOCERA) 

which was vacuumed to the degree of 5×10-3 Pa. Fig. 6 shows a 

photograph of the vacuum-sealed package with the embedded 2D 

asymmetric silicon micro-mirror.  
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Fig. 5. Photograph of the asymmetric silicon micro-mirror 

fabricated by the SOI-MEMS process, which is made from the 

silicon-on-insulator by the semiconductor process. 
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Fig. 6. Photograph of the vacuum-sealed 2D asymmetric silicon 

micro-mirror. 

3. Results 

3.1 Scanning characteristics of the 2D asymmetric 

silicon micro-mirror 

Fig. 7 shows a photograph of the experimental setup of the 

vacuum-sealing package. We obtained the resonant frequency in 

the low-speed axis of 23.3 Hz and in the high-speed axis of 556.8 

Hz respectively. To prevent a reduction in the amplitude width, we 

induced a 90° phase shift between the low- and high-speed axes at 

the resonance frequency, as shown in Fig. 8. In measurement, the 

ratio of the deformation between the low-speed axis of 23.3 Hz 

and the high-speed axis of 556.8 Hz was 6.48. A photograph of the 

Lissajous pattern projected onto a screen of 300 mm away from 

the vacuum-sealing package is shown in Fig. 9. We measured the 

scanning range from the Lissajous pattern with scale. The 

scanning angle was 7.6° (total angle) in the low- and high-speed 

axes and was limited by the output voltage saturation of the 

excited instrument in the vacuum-sealing mount.  

 
Fig. 7. Experimental setup of the vacuum-sealing package. 

 

Fig. 8. Digital oscilloscope recording of the drive voltage for the 

asymmetric silicon micro-mirror shown in Fig. 5 (low frequency: 

23.3 Hz, AC 21 Vp-p; high frequency: 556.8 Hz, AC 15 Vp-p).  
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Fig. 9. Photograph of the Lissajous pattern projected onto a 

screen. 

 
3.2 Electrostatic field distribution measurements       

Electrostatic field distribution measurement using a silicon 

micro-mirror array by SOI-MEMS processes has been reported (11). 

Fig. 10 shows the schematic of a silicon micro-mirror for 

electrostatic field distribution measurement.  

Torsion bar
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Fig. 10. Schematic of a silicon micro-mirror for electrostatic field 

distribution measurement 

 

Fig. 11 shows the schematic of electrostatic field distribution 

measurement using optical level method. When the micro-mirror is 

moved by electrode, the deflection angle of the torsion mirror by 

electrostatic force was determined by the method of Peterson (12). 

The deflection angle of the silicon micro-mirror is given by (1) 

         A
tKEd

lbV
42

32

0

16

)1( 



 ,                   (1) 

where  is the deflection angle of the silicon micro-mirror, 0is 

dielectric constant of vacuum, V is applied voltage, l is torsion bar 

length, b is mirror width,  is Poisson’s ratio, K is a constant 

defined by the shape of the torsion bar. In the case of the torsion 
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bar with a rectangular cross section, K is 0.141. E is Young’s 

modulus, d is distance between the mirror and voltage-applying 

electrode, t is torsion bar width and thickness, and A is a correction 

factor determined using the effective electrode area. By substituting 

the material constant and sizes of the torsion mirror into eq. (1), the 

relationship between the deflection angle  and applied voltage at 

the electrostatic field is given. 

Fig. 11 shows the schematic of electrostatic field distribution 

measurement using optical level method. When  is measured 

using the optical level method, the electrostatic voltage can be 

calculated from eqs. (1).  can be calculated by measuring 

displacement d. 
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Fig. 11. Schematic of electrostatic field distribution measurement 

using optical level method 

 

Fig. 12 shows the schematic of the optical measurement setup. 

The deflection angle of each silicon micro-mirror, which was 

placed on a spherical surface such as Fresnel lens and was 

deflected by an electrostatic field, was measured optically using a 

2D optical scanner and position-sensitive detector (PSD). A laser 

beam (= 532 nm, output power 5 mow, Shimadzu, BEAM 

MATE) was focused on the silicon micro-mirror and scanned 

two-dimensionally; the beam then irradiated each micro-mirror 

through a beam splitter and a convex lens. The reflected laser was 

reflected by the beam splitter and was focused on the PSD 

(Hamamatsu Photonics, S1880) surface to allow measurement of 

the spot position. The horizontal and vertical operations of 23.3 

Hz and 556.8 Hz signals, respectively, at the resonance frequency 

of the asymmetric silicon micro-mirror were driven by the 

piezoelectric ceramic vibrating element. 
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Fig. 12. Schematic of the optical measurement setup. 

 

Fig. 13 shows the photograph of the measurement frame 

incorporating a silicon micro-mirror array. Sixteen silicon 

micro-mirrors were attached to the measurement frame. Four 

silicon micro-mirrors were scanned by a laser beam. The deflection 

direction was limited to the y-axis. Sensor 1 was with or without an 

electrostatic voltage applied. 

Silicon micro-mirror

With or without

a electrostatic

voltage applied

to the sensor 1

Sensor 1

Sensor 3 Sensor 4

Sensor 2

Scanning area at back face

 

(a) Front 

 

(b) Back 

Fig. 13. Measurement frame incorporating a silicon micro-mirror 

array. 

 

Fig. 14 shows the PSD output signal (Y), which was measured by 

scanning a laser beam across a silicon micro-mirror array at Sensor 

1 under an applied electrostatic voltage of 1000 V. The repetition 

time of 42.9 ms corresponded to the 23.3Hz vertical operation 

frequency of the 2D asymmetric silicon micro-mirrors. Four 

spike-like waveforms were observed in the 42.9 ms period. We 

observed the change in the waveform of the PSD output signal (Y) 

with or without an applied electrostatic voltage of 1000 V by the 

deflection of the silicon micro-mirrors of Sensor 1, as shown in Fig. 

15. Fig. 15(a) shows the waveform at 23.3 Hz. Fig. 15(b) shows the 

change in waveform under an applied electrostatic voltage of 1000 

V applied. Nine peaks were observed.  

Output (Y) of PSD

(50 mV/div)
10 ms/div

Vertical drive voltage

of 2D asymmetric

silicon micro-mirrors

(500 mV/div)

42.9 ms
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Fig. 14. Photograph of the output signal of the position-sensitive 

detector (PSD). 
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(a) Waveform at 23.3 Hz 
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(b) Change in waveform 

Fig. 15. Measurement output (Y) of the position-sensitive detector 

(PSD) with or without the electrostatic voltage applied. 

 

4. Discussion 

In this study, we developed silicon micro-mirrors with two 

asymmetric axes for electrostatic field distribution measurements. 

The vibration transmissibility of the proposed mirror under a 

vacuum atmosphere was evaluated by dynamic analysis. We 

measured the electrostatic field distribution using our fabricated 2D 

asymmetric silicon micro-mirrors. 

The ratio of the deformation between the low-speed axis of 30 

Hz and the high-speed axis of 604 Hz was simulated to be 4.04. In 

measurement, the ratio of the deformation between the low-speed 

axis of 23.3 Hz and the high-speed axis of 556.8 Hz was 6.48. The 

difference between the calculated and experimental values was 

apparently due to fabrication errors and the frequency 

characteristics of external piezoelectric ceramic vibrating element. 

In the case of the 2D silicon scanning micro-mirrors, to prevent a 

reduction in the amplitude width, which is caused by interference 

between the vibrations of the low- and high-speed axes, these axes 

oscillated in and out of phase with the resonant frequency, 

respectively (13). 

We measured the electrostatic field distribution using the 2D 

asymmetric silicon micro-mirrors (Figs. 14 and 15). Fig. 16 shows 

a schematic of the line scan on the measurement frame. The laser 

beam was scanned in the direction of the arrow from the starting 

point to the turning point and then returned from the turning point 

to the starting point. The laser beam scanned Sensors 1 and 2 four 

and five times, respectively. The turns are labeled with the 

notation of 1 to 9 in Fig. 16. When the electrostatic voltage of 

1000 V was applied at Sensor 1, the output of the PSD (Y) 

changed. The measurement outputs (Y) of the PSD with the 

notations of 2 and 3 decreased, whereas those of 6 and 7 

increased. 

The PSD can be used to measure the position of the light spot on 

its surface from each current of four electrodes (14). The signal was 

amplified using an operational amplifier and showed a good S/D 

ratio. Displacement p is calculated according to eq. (2) using each 

electrode current output X1, X2, Y1, and Y2: 

21212

1212 L

YYXX

YYXX
p 




 ,               (2) 

where L is the lateral length of the PSD surface. 

Because the deflection direction was limited to the y-axis in our 

experiments, X2 = X1 = 0. Therefore, eq. (2) becomes eq. (3): 

212

12 L

YY

YY
p 




 .                          (3) 

Fig. 17 shows a schematic of the output of the PSD (Y) change 

with or without an applied electrostatic voltage. When the 

micro-mirror was deflected with an electrostatic voltage, the laser 

spot on the surface of the PSD moved from its initial point without 

an electrostatic voltage. The displacement changed as shown in eq. 

(3). In the case of the measurement output (Y) of the PSD with the 

notations of 2 and 3 (Figs. 15 and 16), the displacement becomes 

negative from the initial position. In the case of the measurement 

output (Y) of PSD with the notations of 6 and 7, the displacement 

becomes positive from the initial position. 
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Fig. 16. Schematic of the line scan on the measurement frame. 
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Fig. 17. Schematic of the output of the PSD (Y) change with or 

without an electrostatic voltage. 

 

5. Conclusions 

We developed silicon micro-mirrors with two asymmetric axes 

for electrostatic field distribution measurements using a single 

external piezoelectric ceramic vibrating element. 2D asymmetric 

silicon micro-mirrors were fabricated using an SOI-MEMS 

process. The vibration transmissibility of the proposed mirror under 

a vacuum atmosphere was evaluated by dynamic analysis. We 

obtained the resonant frequency in the low-speed axis of 23.3 Hz 

and in the high-speed axis of 556.8 Hz respectively. To prevent a 
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reduction in the amplitude width, we induced a 90° phase shift 

between the low- and high-speed axes at the resonance frequency. 

The ratio of the deformation between the low-speed axis of 30 Hz 

and the high-speed axis of 604 Hz was simulated to be 4.04. In 

measurement, the ratio of the deformation between the low-speed 

axis of 23.3 Hz and the high-speed axis of 556.8 Hz was 6.48. The 

difference between the calculated and experiment values was 

apparently due to the fabrication errors and frequency 

characteristics of external vibrating element piezoelectric ceramic 

vibrating element. A Lissajous pattern projected onto the screen. 

The scanning angle was a degree of 7.6 (total angle) in the low- 

and high-speed axis. We subsequently measured the electrostatic 

field distribution using the 2D asymmetric silicon micro-mirrors.  
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