

Finite element method simulation of three-terminal graphene NEMS switches

K. Jothi Ramalingam¹, M. Manoharan¹, Hiroshi Mizuta^{1,2} JAIST ¹, Univ. of Southampton ² E-mail: jothi@jaist.ac.jp

Introduction

- \triangleright Graphene based NEMS^[1] switch is expected to achieve a very abrupt switching with Subthreshold swing S < 60 mV/dec.
- NEMS switch is experiences a hysteresis, during the ON/OFF operation.
- The mechanical hysteresis is due to pull in and pull out phenomenon of NEMS.
- For Volatile switches, the mechanical hysteresis should be reduced as low as possible.
- ➤ An actuation electrode model is employed in order to reduce the hysteresis.
- ➤ In the present work, we present a comprehensive three-dimensional FEM (finite-element-method) analysis of the pull-in [2] and pull-out voltages of the graphene cantilevers with actuation electrode.
- > Schematic of switching operation of graphene NEMFET is shown in figure.

(Width x Length)

NEMFET Background Analytical equations: —Pull in — Pull Out Pull in (VPI) =Pull out(VPO) =Schematic of electrostatically **Voltage** actuated mechanical switch Pull in/ pull out characteristic curve g- thickness of the air gap A- Area of contact electrodes $K = \frac{2Ewt^3}{3l^3}$

K-Spring constant

FEM Simulation in IntelliSuite

d- thickness of dielectric layer

 ε_0 - permittivity of free space.

The FEM (Finite Element Method) simulation of the graphene cantilever switch is conducted using IntelliSuite software.

Structural dimensions

Cantilever thickness 1 to 3 nm

 ε_r - relative permittivity of dielectric layer.

- Bottom graphene layer 2 nm
- ✓ Air gap is 90 nm

Device model.

- ✓ Si-Back gate model (SG)
- Graphene bottom gate model (GG)
- ✓ Actuation Electrode(Au) model (AE)

Device types

Si-Back gate types.(SG)

- SG1-0.5 X 0.5um
- SG3-0.5 X 1 um SG4-1 X 0.5 um
- SG2- 1 X0.5 um

Activation Electrode types(GG).

- ✓ AE1-0.5 X 0.2um
- ✓ AE2-1 X 0.25 um
- ✓ AE3-0.4 X 0.2 um

Graphene bottom gate types (AE).

- SG1-0.5 X 0.5um
- SG2- 1 X 0.5 um
- SG3-0.5 X 1 um
- SG4-1 X 0.5 um

Device geometry

 \triangleright [0.5x0.5 um]

Voltage (V) 0.5 X 0.5 um(SG1)

<u></u> → 1 nm ___ 2 nm **→** 3 nm Disp. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Voltage (V) 0.5 X 0.5 um (GG1)

Cantilever motion (Pull out) in Si-Back gate model (SG1-2nm)

@ 1.8 V

@ 1.6 V

@ 1.4 V

Pull in / Pull out Hysteresis of Actuation electrode model (AE)

Cantilever motion (Pull out) in Actuation electrode model (AE1-2 nm)

@ 4.6 V

@ 4.4 V

> Pull in voltage summary of SG and GG gate model

Thickness versus Dimension	0.5 X 0.5 um	0.5 X 1um	1 X 0.5 um	1 X 1 um
SG 1 nm	1.0 v	0.2 v	1.0 v	0.2 v
SG 2 nm	2.5 v	0.6 v	2.5 v	0.6 v
SG 3 nm	4.4 v	1.1 v	4.4 v	1.1 v
GG 1 nm	0.7 v	0.15 v	0.7 v	0.15 v
GG 2 nm	2.0 v	0.5 v	2.0 v	0.5 v
GG 3 nm	3.5 v	0.9 v	3.5 v	0.9 v

[1] J. Sun, W. Wang, M. Muruganathan, and H. Mizuta, Appl. Phys. Lett. 105, 033103 (2014). [2] S. Pamidighantam, R. Puers, K. Baert, and H. a C. Tilmans, J. Micromechanics Microengineering 12, 458 (2002).

Hysteresis analysis 1 nm 160 **2** nm (pa₁₂₀ **3** nm Hysteresis SG1 AE1 AE2 GG1 **Device Model**

Conclusion

- > The Actuation electrode model achieved efficient reduction of hysteresis in NEMS Switch and the pull in / pull out hysteresis is highly depends on the width and length of actuation electrode.
- > The obtained hysteresis results does not taken into account of short range forces (Van der Waals force).
- > The effect of short range forces further to be investigated.