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� Independent grid system in each block.
� Boundary-fitted coordinate (BFC) transformation to generate 

grids in each block.
� Structured, non-orthogonal grids provides high level of 

accuracy.
� Trans-Finite interpolation (TFI) for initial grids and then 

elliptic smoothener.
� Most appropriate for complex geometries

� Can be split into geometrically simpler sub-domains.
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� Finite Volume scheme is most appropriate for fluid flow type 

problems.
� Conservative formulation ensures accuracy.
� Philosophy mimics actual physical phenomena.

� Coupled with multi-block strategy it can be used for complex 
geometries.

� Block calculations are independent � amenable to 
parallelization.

� Computationally more efficient for large problems as smaller 
matrices are solved for.
� Performance of iterative solvers deteriorates with matrix size.
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� Because of the generic nature it can account for the 
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� Conservation of solute mass, momentum, energy and current 

can be reduced to this form.
� Provides scalability and ease of algorithmic implementation.
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valency in order to be practicable.

� Central aspect of all capillary electrophoresis techniques 
and others like micro-array devices.

� Chemically active analytes undergo instantaneous 
association/dissociation reactions in the electrolyte system.

� Therefore, a coupled transport-stoichiometric modeling 
approach is needed.

� Further, this model should be for analytes of all types and 
valency in order to be practicable.



Corning IntelliSenseProprietary Information

Generalized Association/Dissociation ModelGeneralized Association/Dissociation Model
� Strong analytes: undergo complete dissociation (e.g. HCl ), 

fixed charge, easier to model.
� Weak analytes (general case):

� Incomplete association/dissociation.
� Can exist (co-exist) in both ionic and neutral states.
� Ionic composition depends on local conditions like pH, 

etc.
� Analyte types:

� Acid (anionic) : proton donors.
� Base (cationic): proton acceptors.
� Ampholytes: Can act as both acid and base depending 

on local pH, e.g. proteins.

� Strong analytes: undergo complete dissociation (e.g. HCl ), 
fixed charge, easier to model.

� Weak analytes (general case):
� Incomplete association/dissociation.
� Can exist (co-exist) in both ionic and neutral states.
� Ionic composition depends on local conditions like pH, 

etc.
� Analyte types:

� Acid (anionic) : proton donors.
� Base (cationic): proton acceptors.
� Ampholytes: Can act as both acid and base depending 

on local pH, e.g. proteins.



Corning IntelliSenseProprietary Information

Generalized Association/Dissociation ModelGeneralized Association/Dissociation Model
� Seek a stoichiometric model for weak, multivalent analyte 

of any type, which can be linked with transport model.
� Valency of an analyte : max. number of dissociable protons.

� Any Analyte A with valency of n can exist in n+1 states, n 
ionic and 1 neutral (A0, A1,�, An).

� Corresponding reactions can be written compactly as

� And the dissociation constants (j=n, n-1,  �, 1)

� Seek a stoichiometric model for weak, multivalent analyte 
of any type, which can be linked with transport model.
� Valency of an analyte : max. number of dissociable protons.

� Any Analyte A with valency of n can exist in n+1 states, n 
ionic and 1 neutral (A0, A1,�, An).

� Corresponding reactions can be written compactly as

� And the dissociation constants (j=n, n-1,  �, 1)

1j jA A H +
− +�

1 1n j j jK A H A+
− + − � �� � � �= � � � �� �



Corning IntelliSenseProprietary Information

Generalized Association/Dissociation ModelGeneralized Association/Dissociation Model
� Treat the ensemble of all states (ionic and neutral) as one 

component variable in the formulation.
� The reactions are instantaneous, infinitely faster than other 

transport processes.
� Total ensemble concentration of analyte [A] = Σ [Aj]
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� Using reaction kinetics models derive effective properties of 
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� Effective mobility (Ωeff) = F (Ωi, zi, Ki, [H+])
� Degree of dissociation of each state.
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� Electroneutrality condition for pH.
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conservative convection-diffusion form.
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Electrokinetic Focusing Case StudyElectrokinetic Focusing Case Study
Sample

Focus 1
16 V

Focus 2
16 V

Waste
0 V Arrows depict direction of solute transport

Voltage varied to obtain 
desired focusing
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Electrokinetic Focusing Case StudyElectrokinetic Focusing Case Study
� Cross-channel configuration

� Sample and waste channel lengths -100 µm
� Focusing channel lengths - 60 µm
� All channels are 18 µm in width and depth

� Buffer is a 10 mM Sodium Tetraborate solution
� Sample (cationic) is Rhodamine 6G (40 µM)
� Focusing reservoir is maintained at 16 V
� Waste reservoir is at ground
� Diffusivity is 3e-6 cm2/s
� Electrophoretic mobility is 1.4e-4 cm2/(V.s)
� Reference: Jacobson and Ramsey; Analytical Chemistry, 

Vol. 69, No. 16, August 15, 1997
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Application:  Electrokinetic FocusingApplication:  Electrokinetic Focusing

CCD Imaging
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ConclusionsConclusions
� GENERALIZATION: Valid for any analyte � multivalent, 

weak, and acid, base or ampholyte.
� Explicit coupling between transport phenomena and 

reaction kinetics.
� By virtue of generalized flux conservation formulation it 

can account for presence of multiple transport phenomena �
bulk flow (pressure driven, EOM, etc.), electrophoretic 
effects, temperature effects, electric field calculations, etc.

� Generalized approach enables easy and efficient coupling 
with a variety of boundary conditions.

� Amenable to parallelization.
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