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ABSTRACT

Accurate models are an essential element for determining the
mechanical properties of thin films from load-deflection
experiments. Analytical models are desirable because of their
simplicity. Finite element method (FEM) models have the
potential to be more accurate. Through an extensive FEM analysis
of the load-deflection methods, we have confirmed that while the
functional form of the analytical result is correct, three constants in
the model must be corrected by as much as 30%. Experimental
measurements of the deformed membrane shape have been made
and they match the FEM results, verifying the accuracy of the
FEM models. Experimental values, extracted from load-deflection
analysis, for the biaxial modulus and the residual stress of thin
films of Dupont PI2525 and Hitachi PIQ13 are presented.

INTRODUCTION

The load-deflection method has previously been developed for
the measurement of the mechanical properties of thin films [1-6].
In this technique, the deflection of a suspended film is measured
as a function of applied pressure (Fig. 1). The biaxial modulus
and the residual stress of the film can then be extracted from the
data using various mathematical models. The models for both
square and circular membranes have been developed using both
analytical and finite-element methods (FEM).

Figure 1: Deflection of a suspended membrane in
response to an applied pressure.

In the case of the analytical model, a functional form of the
deflected shape is assumed, and the total strain energy minimized
to find the load-deflection behavior. A hemispherical cap is
assumed as the deflected shape of the circular membranes [2],
whereas a cos(kx)cos(ky) form is assumed for the square
membranes {7-8]. These choices are often made to simplify the
mathematics at the expense of modeling accuracy.

The FEM models are generated by inputting a set of geometric
and material parameters into a FEM program and simulating a
load-deflection experiment. By noting the effect of variations of
each material parameter on the simulation, a model can be derived.

In all cases the load-deflection behavior is of the form:
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where P is the applied pressure, d the center deflection, a the
radius/half-edge length of the membrane, t the thickness, E the
Young's Modulus, v the in-plane Poisson Ratio, o, the residual
stress, and E/(1-v) the biaxial modulus. The dimensionless
constants C; and C, and the dimensionless function f(v) are
geometry and model dependent.

It can be seen from (1) that the biaxial modulus and residual
stress can be evaluated from the experimental pressure-deflection
data and the membrane dimensions provided that C;, C,, and f(v)
are known. Accurate values for these constants are therefore
essential for the accurate determination of the mechanical
properties. The choice of modeling method affects the values of
these constants. Our goal in this study is to show that in contrast
to the analytical models, which have to assume a shape function,
the FEM model yields the shape function, and this shape function
is in good agreement with experiment.

ANALYTICAL MODELS

In the analytical model, a functional form of the deflected
shape must be assumed and the total strain energy minimized to
find the load-deflection behavior. For square membranes, a one-
term Fourier approximation of the actual deflected shape can be
assumed. The form is from Allen [7-8]:
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where x and y are the distances in the x- and y-axes away from the
center, z is the deflected height at (x,y), a is the half-edge length,
and d is the center deflection.

The analytical shape for the circular case is assumed to be a
hemispherical cap [2]. The equation is:

z=d-R +(R212)2 3)

where T is the distance from the center, R is radius of curvature of
the deflected membrane, and d is the center deflection. The value
of R can be calculated from
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where a is the radius of the membrane.

With these assumptions for the deflected shape, the
minimization of the strain energy in the presence of a residual
tensile stress is straightforward [2,7-8]. The resulting values for
Cy, C,, and f(v) are shown in Table IL Note that a simplified
linear fit to the actual f(v) for square membranes is given in the
table. The actual equation can be found in the references [4,7-8].

FINITE ELEMENT METHOD

Finite element modeling of square and circular suspended
membranes was carried out using both ABAQUS and ADINA.
Agreement between the two programs was excellent. In order to
check the consistency of the FEM models, several types of
elements were used to solve this problem, and their results were
compared.

The types of elements and the number of nodes selected for
this work are shown in Table I. Three different types of elements
were used for square membranes: 4-node and 16-node shell
elements, and 20-node 3D solid elements. For circular films, 4-
node and 16-node shell elements and 8-node 2D solid
axisymmetric elements were used. Fig. 2 shows the schematic
geometry of the different elements. Nonuniform grids were also
used in some cases to put more nodes near the edges of the
membranes. These elements are labeled as ratioed elements in
Fig. 2.
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TABLE I
The element types and the number of nodes per element
used in FEM analysis.

membrane  element nodes number  ratioed
shape type per of elements
clement _elements
circular shell 4 1200 no
shell 16 105 yes
2D solid 8 960 no
square shell 4 324 no
shell 16 64 yes
3D solid 20 256 yes
square mesh circular mesh
shel ] e @ I
ratioed ratioed
shell gﬁ shell gg
ratioed 3D £3 >[I0
solid @ axisymmetric

Figure 2: The schematic geometry of FEM elements.

Ratioed elements were used for the 16-node shell and the 20-
node 3D solid elements in order to accurately model the behavior
of the membrane near its boundaries. The smallest size for the
shell elements was 0.047mm or about 1.2% of the half edge
length; for the 3D solid elements it was about 0.058mm or 1.5%.
The deflected shape for a square membrane as a function of
element type is shown in Fig. 3. The variation in both the
deflected shape and the center deflection for the different elements
is less than 0.3%.

The results for a circular membrane are shown in Fig. 4.
Again the variation in the results is less than 0.3%. This indicates
that our FEM analysis converges to the same answer regardless of
the element type. We found the best balance between accuracy
and computation time to be a grid of 576 4-node shell elements for
square membranes and 250 8-node 2D solid elements for circular
membranes.
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Figure 3: FEM-calculated deflected shape along center-to-
midside for a square membrane as a function of element type.
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Figure 4: FEM-calculated deflected shape along radius of a
circular membrane as a function of element type.

By computing the deflection vs. pressure for assumed values
of 6, E, and v for a sequence of applied loads, and fitting the
results to Equation (1), it is possible to determine C,; and the
product C,f(v). For convenience, we assign C, as the value
assigned to the analytical model when v=0.25; i.e. f(Vv) is scaled
such that f(v=0.25) = 1. The results of extensive fittings are
shown in Table II. The values are accurate to within 1%.

For the circular case, the FEM value for f(v) differs from the
analytical value by 12% at v=0.4. C; and C, are the same for
both models. For square membranes, the FEM and analytical
values for C, differ by 12% while f(v=0.4) varies by 33%.

TABLE I
Modeled values of C,, C,, and f(v) for both square and
circular membranes.
Membrane  Model C C, f(v)
Shape
Circular  Analytical 4.0 2.67 1.0
FEM 4.0 2.67 (1.026 +0.233v)"!
Square  Analytical 3.04 1.37 1.075 - 0.292v
FEM 3.41 1.37 1.446 - 0.427v
EXPERIMENTAL PROCEDURE
Fabricati f Samp]

Square membranes of BTDA-MPDA/ODA (Dupont PI12525)
were fabricated using micromachining techniques [5]. A
combination of oxide mask, p* etch stop, and KOH etchant was
used to define a thin silicon membrane on an <100> n-type silicon
wafer. The polyimide was then spun cast onto the wafer and the
silicon membrane etched in an SFg plasma. The final structure
was cemented to an aluminum plate for pressure testing.

Circular membranes were made from Hitachi PIQ13 films
using a variation of the technique outlined in [6]. PIQ13 was spun
cast onto a bare silicon wafer. Using 6:1:1
HF:HNOj3:CH;COOH, a hole was then etched through the center
of the wafer, leaving a suspended polyimide membrane. The
membrane was then transferred to a machined Vespel ring by
epoxying the ring to the membrane and cutting it free from the
silicon support. Finally, the ring was cemented to an aluminum
plate to facilitate testing.
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The thicknesses of the films were taken from Dektak
measurements. The dimensions of the membranes were measured
with a Nikon UM-2 measuring microscope equipped with two
Boeckeler model 9598 digital micrometers connected to a
Metronics Quadra-Chek II digital readout box. The maximum
error in each axis for the calibrated xy stage was less than 3
microns.

The samples were clamped into a custom-designed
pressurizing jig for testing. Computational routines inside the
Quadra-Chek II were used to locate the center of the membrane
under test. The deflection resulting from varying pressure loads
for each membrane was then measured with the microscope [5-8].
A 40X objective with a numerical aperture of 0.5 provided the
sub-micron depth of focus needed to locate the surface of the
membranes. A 543-series Mitutoyo digimatic indicator was used
to track the z-axis movement of the microscope head. The total
measurement error in the deflection was less than 2 microns.
Pressure readings accurate to 0.02 psi were made with a MICRO
SWITCH 142PC05G pressure sensor.

All measurements were done at room temperature in dry air
(dew point < -46° C). The strain in the sample was never allowed
to exceed 1%. Ten to twenty pressure-deflection measurements
were taken, and the points were fit to equation (1) using the FEM
constants to determine the residual stress and biaxial modulus.

A v of 0.4 was assumed for all calculations. We can check
this assumption by comparing the Young's modulus predicted by
this assumption against published values. The Young's modulus
of PI2525 has been measured from uniaxial tests to be 3.2 £ 0.16
GPa [6]. The predicted biaxial modulus of 5.22 GPa combined
with the assumed Poisson ratio of 0.4 yields a value of 3.13 GPa
for E, so our computations are consistent. The results for two
membranes are shown in Table III. The accuracy of the values is
estimated to be +5%.

TABLE III
Measured residual stress and biaxial modulus for
two membranes.

Membrane Residual Biaxial
Shape and Dimensions Stress Modulus
(MPa) (GPa)
Square
t=35.2 um, a = 4826 pm 32.2 5.22
(Dupont PI2525)
Circular
t=11.4 pym, R = 12610 pum 35.2 5.37
(Hitachi PIQ13)
Measurement of Deflected Shapes

The same apparatus as above was used to measure the
deflected profiles. The calibrated xy stage allowed us to locate the
center of the membranes and accurately translate the sample along
the appropriate path. The results are plotted against the modeled
results in Figures 5-6. The residual stress and biaxial modulus
derived using the indicated model and the measured thickness,
edge length/radius, and pressure were used to generate the
modeled results.
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Figure 5a: Experimental deflected shape vs. FEM results and
analytical model for center-to-midside of square membrane.
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Figure 5b: Experimental deflected shape vs FEM results and
analytical model for diagonal of square membrane.
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Figure 6: Experimental deflected shape vs FEM result and
analytical model for radius of circular membrane.
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DISCUSSION

The center-to-midside deflected shape for a square membrane
is shown in Fig. 5a; the deflected shape along the diagonal is
given in Fig. 5b. The agreement between the experimental data
and the FEM results is within 0.5% in both cases. The difference
between the experimental data and the analytical solution is over
10% at the x-position of 4000pm.

Figure 6 shows the predicted and measured deflected shapes
for circular membranes. Note that both the FEM result and the
analytical result are within 3% of the experimental data. This
indicates that the actual deflected shape is very close to a
hemispheric function.

On the basis of this experimental confirmation of the FEM-
predicted deflected shapes, we can conclude that the FEM values
of C;, C,, and f(v) given in Table II are the correct values to use
for load-deflection analysis.

CONCLUSION

Through a careful study of FEM modeling accurate values for
C;, C,, and f(v) in Eqn. (1) have been found. These values are
substantially different from those predicted by analytical models.
By direct experimental observation, we have verified that FEM
modeling yields the correct deformed shape, and, hence the values
of the constants obtained from FEM provide a reliable basis for
using load-deflection data to measure the mechanical properties of
materials.
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